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Abstract

In this work we study the learnability of
stochastic processes with respect to the con-
ditional risk, i.e. the existence of a learning
algorithm that improves its next-step perfor-
mance with the amount of observed data. We
introduce a notion of pairwise discrepancy
between conditional distributions at different
times steps and show how certain properties
of these discrepancies can be used to con-
struct a successful learning algorithm. Our
main results are two theorems that estab-
lish criteria for learnability for many classes
of stochastic processes, including all special
cases studied previously in the literature.

1 Introduction

A large part of machine learning relies on the as-
sumption that data is independent and identically dis-
tributed. However, there are also many situations in
which this assumption is violated, either because data
points are statistically dependent, or because the un-
derlying data distribution changes over time. In this
paper, we study a scenario, in which the observed data
is a realization of a stochastic process, i.e. a time series.

Stochastic processes can be conveniently understood
from a generative point of view: each data point is
sampled from a conditional data distribution, where
the conditioning is on the sequence of observations so
far. Several common situations are naturally repre-
sented in this way, including the case of i.i.d. data (the
conditioning has no effect), Markov sequences (only
the last element of the sequence influences the con-
ditioning), deterministic or stochastic dynamical sys-
tems (the conditional distribution is a deterministic
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function of the history, potentially plus an indepen-
dent noise term). In this work, however, we add a
discriminative aspect: given a loss function and a set
of hypotheses, the task is to find the best hypothesis
to apply at the next time step. Formally, we study
the problem of conditional risk minimization, where
the risk at any time step is defined with respect to
the conditional data distribution, i.e. as the expecta-
tion of the loss of a hypothesis on the next data point,
conditioned on the data observed so far.

For a given class of processes, the task is to find an
algorithm that outputs one hypothesis for each step
with the property that the difference of their risks to
the optimal ones converges to zero for every process
in the class. We call a class of stochastic processes
learnable, if it admits such an algorithm, and we call
the algorithm itself a limit learner for this class.

Learnability has been established for a number of spe-
cific classes, see our overview in Section 2. However,
these is no dedicated study of what makes stochastic
processes learnable in general.

In this work we provide a general view on the prob-
lem by identifying a key characteristic of a stochastic
process that allows the construction of a limit learner.
Our main insight is the importance of the pairwise
discrepancies, a notion of distance between the con-
ditional data distributions of the process at different
time steps. These are incomputable quantities, but
they can be controlled in various ways depending on
the properties of a particular process.

We distinguish between two situations: convergent and
non-convergent discrepancies. For the former we show
that if the pairwise discrepancies exhibit a specific type
of convergence, then a standard empirical risk mini-
mization algorithm can be shown to be a limit learner.
This result covers the existing results on the learn-
ability of particular classes. For the non-convergent
situation we prove a general theorem that says that if
one has tight control of the individual discrepancies for
every process in a class, then a modification of an em-
pirical risk minimization algorithm is a limit learner.
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2 Related work

While initially the statistical learning theory heavily
relied on the i.i.d. assumption [Vapnik and Chervo-
nenkis, 1974], extensions to time series have soon be-
come a viable and important research direction. Early
work on the learning theory for the stochastic pro-
cesses considered the marginal risk, where the expec-
tation of the loss is taken with respect to the marginal
distribution of the process [Yu, 1994, Meir, 2000].
While the marginal risk is representative for the long
term behaviour of the process, it was argued [Pestov,
2010, Shalizi and Kontorovitch, 2013] that the condi-
tional risk is the more relevant quantity in many situa-
tions, namely when one is interested in the short term
behaviour.

Conditional risk minimization is related to forecasting
future values of time series, which is a well-studied
topic with long history. Traditional approaches in-
clude forecasting by fitting different parametric mod-
els to the data, such as ARMA or ARIMA, or using
spectral methods, see, e.g., [Box et al., 2015]. Alterna-
tive approaches include nonparametric prediction of
time series [Modha and Masry, 1996, 1998, Alquier
and Wintenberger, 2012], and prediction by statistical
learning [Alquier et al., 2013, McDonald et al., 2012].
A related line of work comes from the field of dynam-
ical systems, where one tries to estimate the under-
lying transformation that governs the transitions, see
[Nobel, 2001, Farmer and Sidorowich, 1987, Casdagli,
1989, Steinwart and Anghel, 2009].

A number of papers established the learnability of par-
ticular classes: i.i.d., exchangeable, some special cases
of stochastic processes, see [Steinwart, 2005, Pestov,
2010, Berti and Rigo, 2016, Mohri and Rostamizadeh,
2013], however, all these results look at the processes
for which the conditional risk can be estimated by an
uniformly weighted average over the previous obser-
vations. We cover these classes in our Theorem 1 by
providing a general condition, which is fulfilled in these
special cases. However, there are a lot of classes of our
interest, such as dynamical systems, ergodic processes
or distributional drift scenarios, which are not covered
by the condition of Theorem 1 and require a different
treatment. [Kuznetsov and Mohri, 2014] also looked at
the possibility of estimating the conditional risk by an
empirical average, but the convergence of their bound
requires a different definition of a risk when one looks
not at the next step distribution, but at some number
steps into the future with this number increasing with
the amount of observed data.

The above works follow a classical path of establish-
ing learnability using the empirical risk minimizer, i.e.
the minimizer of the training error, an estimate of a

risk. In our work we use the same principle, minimiza-
tion of an estimator. However, since the training error
usually is a poor estimate of a conditional risk, the
central problem in our setting is a choice of an esti-
mator. The problem of the estimation of a conditional
risk could be solved by estimating the next-step condi-
tional distribution, which, however, is a hard problem
in general. For example, [Györfi et al., 1998] show that
it is not possible for all stationary and ergodic pro-
cesses. On the opposite side, [Morvai, 2003] provides a
scheme that can estimate the conditional probabilities
at some random points in time, which, unfortunately,
is not good enough for our setting since we need an
estimator at every time step.

Conditional risk minimization was considered by
[Kuznetsov and Mohri, 2015] and later extended in
[Kuznetsov and Mohri, 2016]. They do not try to
construct a limit learner, but rather consider the be-
haviour of the empirical risk minimization algorithm
at each fixed time step by taking a non-adaptive es-
timator. Unfortunately, their methods can not be
used to show learnability, because the generalization
bounds have a constant term in the upper bound,
which prevents it from converging. [Zimin and Lam-
pert, 2015] considered a conditional risk minimization
problem with a different notion of risk, when at each
time step one conditions not on the whole sample, but
on some fixed number of observations. For this prob-
lem setting, they proved the learnability of stationary
mixing processes under a number of assumptions us-
ing NadarayaâĂŞWatson kernel estimator. [Winten-
berger, 2014] looked at the problem of bounding the
cumulative conditional risk in the online learning sce-
nario. The main difference is that we study the harder
problem of minimizing the risk at each step and not in
the cumulative sense. We discuss the relation to their
work in more details in the supplementary material.

3 Learnability of Stochastic Processes

3.1 Conditional risk minimization problem

We start by describing our notations. We are given
a sequence of observations {zt}nt=1 from a stochastic
process taking values in some space Z. We will write
zi:j as a shorthand for (zi, . . . , zj) for i ≤ j. We con-
sider a hypotheses class H, which is usually a subset of
{h : Z → D} with D being a decision space. We also
fix a loss function ` : D × Z → [0, 1], that allows us
to evaluate the loss of a given hypothesis h on a given
point z as `(h(z), z) = `(h, z), where the latter version
is used to shorten the notation. Whenever needed,
we will use L(H) to denote the induced space of func-
tions {`(h, ·),∀h ∈ H}. Throughout the paper we as-
sume that L(H) has a finite sequential fat-shattering
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dimension, a notion of complexity of a function class
(the definition can be found in the supplementary ma-
terial). For any time step t, we denote by Et [f(zt+1)]
the expectation of a function f with respect to the dis-
tribution of the next step, conditioned on the data so
far, i.e. E [f(zt+1)| z1:t]

Example. A typical example of a setup is a classi-
fication problem, where Z = X × {0, 1} with X be-
ing an input space, H ⊆ {h : X → [0, 1]} is a space
of classifiers that output the probability of an input
belonging to one of the classes, i.e. D = [0, 1], and
`(h, (x, y)) = (h(x) − y)2 is the squared loss. How-
ever, our general formulation allows us to model not
only standard machine learning tasks, but also, for ex-
ample, time series prediction problems. To predict the
next value of a discrete valued process taking values in
a space S, we can define the hypotheses set as a set
of constant functions: H = {hs(z) = s,∀s ∈ S}. Then
choosing a hypothesis is equivalent to choosing a value
in S. In this situation it makes sense to use 0-1 loss
`(hs, z) = I [hs(z) 6= z] = I [s 6= z].

Our goal at each step is to find a hypothesis with the
minimal conditional risk, i.e. the minimizer of the ex-
pected loss on the next point conditioned on the ob-
served data so far. Formally, the risk at step n is
Rn(h) = En [`(h, zn+1)] and we want to perform the
minimization

min
h∈H

Rn(h). (1)

Example. For the above-mentioned example of pre-
dicting the next step of discrete valued process, let us
assume that the process is a Markov chain with a state
space S and fix a transition function π : S → ∆S,
where ∆S is a space of distributions over S. Then
finding the most probable value on the next step can be
stated as a conditional risk minimization problem with
the defined H and `:

min
h∈H

E [`(h, zn+1)| z1:n] = min
s∈S

P [s 6= zn+1| zn] , (2)

which is equivalent to maxs∈S π(s|zn).

Since, in practice, the distribution of the process is
unknown, we are looking for a method that can per-
form (1) based only on the observed data, i.e. that
produces a sequence of hypotheses hn, where each hn
can be computed from the data observed up to step n
and hn approximates the minimum of (1). In view of
our task, the minimization of the conditional risk, we
need control over the quality of the approximations.
Ideally, the quality should improve with the method
observing more data. We formalize this goal in the
following definition.

Definition 1 (Learnability). For a fixed loss func-
tion ` and a hypotheses class H, we call a class of

processes C conditionally learnable in the limit if there
exists an algorithm that, for every process P in C, pro-
duces a sequence of hypotheses, hn, each based on z1:n,
satisfying

Rn(hn)− inf
h∈H

Rn(h)→ 0 (3)

in probability over the samples drawn from P . We
call an algorithm that satisfies this condition a limit
learner for the class C.

Throughout the paper we will call conditionally learn-
able in the limit classes just learnable. It is also possi-
ble to consider almost sure convergence in the defini-
tion of learnability with a minor modifications of our
statements.

Some classes of processes are known to be learnable,
for example, i.i.d. sequences by support vector ma-
chines, [Steinwart, 2005], or exchangeable sequences
by empirical risk minimization, [Pestov, 2010, Berti
and Rigo, 2016]. On the opposite side, the class of all
stationary and ergodic binary processes is not learn-
able in the particular prediction setting, as we show
in the supplementary material based on the results of
[Györfi et al., 1998].

3.2 Empirical risk minimization

In this paper we focus on the empirical risk minimiza-
tion (ERM) principle, which governs us to construct an
estimator, R̂n, of the risk based on the data and use the
minimizer of the estimator, hn = argminh∈H R̂n(h),
as an output hypothesis. The main question is how to
construct this estimator. In the case of an i.i.d. pro-
cess, it is common to use 1

n

∑n
t=1 `(h, zt). For general

processes, however, this quantity is not a good choice
as it does not converge to the conditional risk, except
for some special cases, which are covered by Theorem
1. For other situations we consider linear estimators
of the form R̂n(h) =

∑n
t=1 wt`(h, zt) (we omit the de-

pendence of wt’s on n, but emphasize that at each step
the weights can be different, because we estimate dif-
ferent quantities). We study the question of finding
”good” weights w based on the observed sample that
make empirical risk minimization a limit learner. This
makes the weights a function of the observed data, so
they must be treated as random variables.

Example. For the Markov chain example the estima-
tor has the form R̂n(hs) =

∑n
t=1 wtI [s 6= zt]. Clearly,

there is no fixed choice of weights that would approx-
imate the conditional risk well for every realization
of the process. The empirical average with uniform
weights, wt ≡ 1

n , for example, converges to the risk
with respect to the stationary distribution of the chain,
not the conditional one. Instead, we should choose wt
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to be large, if the (conditional) distribution of zt is sim-
ilar to the distribution of zn+1, i.e. π(·|zt−1) ≈ π(·|zn).
Otherwise, wt should be small. The same intuition
holds for general processes, as we will show in Sec-
tion 4.2.

To study the properties of the ERM, we use the fact
that

Rn(hn)− inf
h∈H

Rn(h) ≤ 2 sup
h∈H

∣∣∣R̂n(h)−Rn(h)
∣∣∣ (4)

and, henceforward, focus on the right hand side,
i.e. uniform deviations of the estimator. Our start-
ing point is the following decomposition, proposed in
[Kuznetsov and Mohri, 2015]:

sup
h∈H

∣∣∣R̂n(h)−Rn(h)
∣∣∣

≤ sup
h∈H

∣∣∣∣∣
n∑
t=1

wt (`(h, zt)−Rt−1(h))

∣∣∣∣∣ (5)

+ sup
h∈H

∣∣∣∣∣
n∑
t=1

wtRt−1(h)−Rn(h)

∣∣∣∣∣ .
For fixed data-independent weights, these two sum-
mands are well understood. The first term represents
the stochastic part of the problem and can be shown
to converge under very general conditions using the
machinery of [Rakhlin et al., 2014]. An important
fact is that the rate of convergence is determined by√∑n

t=1 w
2
t . For example, uniform weights wt = 1

n
yield an optimal, O( 1√

n
), rate. On the contrary, if

only one sample is present, i.e. wt = 1 for some t and
wt = 0 for all others, then there is no convergence as√∑n

t=1 w
2
t does not decrease as a function of n.

The second term measures how well Rn(h) is approx-
imated by the mixture of the previous expectations.
As a distance measure between two distributions, it
is also known by the name of an integral probability
metric and is studied, for example, in [Zolotarev, 1983,
Müller, 1997]. For risk minimization problems it is a
very suitable measure of distance, because it is adapted
to the underlying hypothesis set, making it a popular
choice in the domain adaptation literature [Kifer et al.,
2004, Ben-David et al., 2007, Mansour et al., 2009,
Ben-David et al., 2010, Mohri and Medina, 2012].

The decomposition in (5) highlights a trade-off
between two desirable properties of the weights:
they should offer good statistical power (have small√∑n

t=1 w
2
t ), while achieving a high approximation

quality (small discrepancy).

To our best knowledge, no studies has gone beyond
the decomposition in (5) and even the behaviour of
the terms in (5) is understood only for fixed weights.

4 Our contribution

Our major insight is that while the second term in
(5) is hard to control directly, i.e. it is hard to find
good weights based only on the data, controlling an
upper bound is a more plausible task. To this end, we
introduce the key notion of pairwise discrepancies, a
measure of distance between conditional distributions
at different time steps.

Definition 2 (Pairwise discrepancy). For a sample
z1, z2, . . . from a fixed stochastic process, the pairwise
discrepancy between time points i and j is

di,j = sup
h∈H
|Ri(h)−Rj(h)| . (6)

For weights that satisfy wt ≥ 0 and
∑n
t=1 wt = 1, we

can further upper bound the second term in (5).

sup
h∈H

∣∣∣∣∣
n∑
t=1

wtRt−1(h)−Rn(h)

∣∣∣∣∣ ≤
n∑
t=1

wtdt−1,n, (7)

which suggests that tight control of the pairwise dis-
crepancies is desirable.

From this point we distinguish between two situations:
when the discrepancies exhibit a special form of con-
vergence and when they do not. In the former case, we
show that using uniform weights is sufficient. For the
latter, we construct a special weighting scheme that is
based on the notion of an M-bound, which we intro-
duce later, allowing to control the discrepancies.

4.1 Convergent case

The intuition behind this situation is that if a sequence
is convergent then the average of elements in the se-
quence also converges to the same limit. However, in
our situation we do not have a single sequence, but
rather a double array of discrepancies, dt,n. We use the
following definition of convergence, which is a modifi-
cation of standard convergence in probability to our
special case of double array.

Definition 3. A double array of random variables dt,n
with n ∈ N and 0 ≤ t < n is called convergent if

∀ε > 0,∀δ > 0,∃n0, t0 : 0 ≤ t0 < n0,∀n ≥ n0, (8)

∀t0 ≤ t < n : P [dt,n > ε] ≤ δ.

With this definition in hand, we can state the following
theorem.

Theorem 1. If every process in the class C has conver-
gent discrepancies, then the ERM algorithm with uni-
form weights, i.e. wt = 1

n at step n, is a limit learner.

We will present a few examples of classes with conver-
gent discrepancies in Section 5.1.
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4.2 Non-convergent case

As we have observed in the example of a Markov chain,
in the non-convergent situation there is no single choice
of weights that can be applied irrespectively of the
process and the sample. Rather we should adjust the
weights to the data at hand.

Example. Let us use the same Markov example
to build intuition of how that can be achieved.
First, we observe that the pairwise discrepancies
can be written using the transition function, di,j =
maxs∈S |π(s|zi)− π(s|zj)|. Then it is immediate
that dt−1,n ≤ I [zt−1 6= zn], hence, setting wt =

I[zt−1=zn]∑n
j=1 I[zj−1=zn] seems like a good choice: it uses only

samples from the distribution we are trying to predict
for, and it distributes the mass evenly among those.
Consequently, the discrepancy term in (5) is zero and∑n
t=1 w

2
t is minimal. For each fixed value s of zn, the

above upper bound I [zt−1 6= s] depends only on the past
values of the process and zn is actually the only thing
that ties the weights to future values.

We summarize the important properties of the exam-
ple in the following definition, which allows more flex-
ibility and does not require the space to be discrete or
the process to be Markov.

Definition 4 (M-bound). An M-bound is a double
array of random variables Mt,j , where t, j ∈ N, such
that

1. Mt,j is a function of z1, . . . , zt for any j ∈ N,

2. there exists a sequence of random variable Jn tak-
ing values in N and a deterministic sequence ∆n

such that

dt−1,n ≤ ∆n +Mt−1,Jn

for 1 ≤ t ≤ n.

Note that for any process there is a trivial, but not
that useful, M-bound with ∆n = 1 and Mt,j = 0 for
all t, j.

Example. In our running example, let s1, s2, . . . , s|S|
be any enumeration of S. Then we can define Mt,j =
I [zt 6= sj ] for 1 ≤ j ≤ |S|, ∆n = 0 and set Jn = k for
k that satisfies sk = zn.

For a given M-bound, we can further upper bound (7):

sup
h∈H

∣∣∣∣∣
n∑
t=1

wtRt−1(h)−Rn(h)

∣∣∣∣∣ ≤ ∆n +

n∑
t=1

wtMt−1,Jn .

(9)
This expression would be minimized by setting wt = 1
for the index t with minimal value of Mt−1,Jn , while

keeping the other weights at 0. However, as discussed
above, such a choice is disastrous for the stochastic
part of (5). Therefore, we suggest to use a version of
soft-min with some smoothing function gn : R→ [0, 1]
that also could be different at each step.

wt(Jn) =
gn(Mt−1,Jn)∑n
j=1 gn(Mj−1,Jn)

(10)

for 1 ≤ t ≤ n. A popular smoothing function is
gn(x) = e−γnx for some γn > 0. In the example
of a Markov chain, the simpler gn(x) = I [x = 0] =
lim
γ→0

e−γx was sufficient.

Due to the stochastic nature of the process, it may
not be possible to have a good bound for each possible
realization. This can be seen even for simple Markov
chains. Imagine a situation in a Markov chain when
at step n we observe the state zn for the first time.
Then we have no information in the sample about the
distribution of the next step. Nevertheless, if such re-
alizations are rare, the process can still be learnable.
We formalize this idea in an exceptional set of realiza-
tions, which we are going to ignore and require that
they appear with small probability.

Definition 5 (Exceptional set). For a fixed n, for
any k ≥ 1 and 1 ≤ m ≤ n, set

Ek,m =
{
Jn ≤ k ∧

n∑
t=1

gn(Mt−1,Jn) ≥ m
}
. (11)

We define Eck,m, the complement of Ek,m, as an excep-
tional set of the realizations.

Note that this set is also different at each step, but we
omit the index n to avoid cluttering of the notations.
The condition in (11) mainly requires to have a lower
bound on the denominator of wt(Jn)’s, thereby avoid-
ing the situation observed in a Markov chain example.
We will discuss the behaviour of P [Ek,m] for discrete
state Markov chains (and other processes) in Section
6.

Our main result is the following theorem, which pro-
vides guarantees on the performance of empirical risk
minimization with our proposed choice of weights.

Theorem 2. For any fixed n, for any k,m ≥ 1, α ∈
[0, 1] and β ∈ [0, α/4] the following inequality holds

P
[

sup
h∈H

∣∣∣R̂n(h)−Rn(h)
∣∣∣−∆n − Λn ≥ α

]
(12)

≤ 2kN∞(L(H), β, n)

(α− 4β)2
e−

1
2m(α−4β)2 + P

[
Eck,m

]
,

where Λn =
∑n
t=1 wt(Jn)Mt−1,Jn and N∞(L(H), β, n)

is a maximal β-cover of L(H) with respect to the `∞
norm (the definition is given in the appendix).
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It may be instructive to look at the different form of
Theorem 2. For any k,m ≥ 1, any δ > P[Eck,m] and
β > 0, with probability 1 − δ the following inequality
holds:

Rn(hn)− inf
h∈H

Rn(h) ≤ ∆n + Λn + 4β (13)

+

√
2 log 4m

δ + 2 log 2kN∞(L(H), β, n)

m
. (14)

From this form we can read off conditions under which
the ERM algorithm becomes a limit learner. As this
means that the right hand side converges to 0, in par-
ticular we need that ∆n + Λn (which is simply the
M -bound (10) for the chosen weights) vanishes in the
limit.

Corollary 1. Assume that for every the process P in
the class C there exists a sequence of M-bounds and
smoothing functions satisfying ∆n → 0 and Λn → 0.
In addition, if there exist kn,mn satisfying mn

logn →∞
and P[Eckn,mn

] → 0, then C is conditionally learnable
in the limit by the ERM algorithm based on the given
M-bounds and smoothing functions.

Note that the algorithm does not require knowledge of
the parameters k and m, merely the existence of good
values.

The above results show that the quality of the M-
bounds is of crucial importance for establishing the
learnability. In Section 5.2 we highlight constructions
of M-bounds based on prior knowledge (or assump-
tions) on the processes. Moreover, each process of a
class should not produce unfavorable sequences very
often. We will look into this property of processes in
more details in Section 6.

5 Controlling pairwise discrepancies

In this section we look at different ways in which it is
possible to control the pairwise discrepancies.

5.1 Convergent case

A trivial example of the convergent situation is an i.i.d.
process, because all the discrepancies are zero. More
generally, we consider a class of uniformly convergent
martingales. This class consists of processes that form
martingales for every function f ∈ L(H) applied to its
values, that is Es [Et [f(zt+1)]] = Es [f(zs+1)] for s < t.
By standard results in the theory of martingales, e.g.
[Williams, 1991], for every f there is a limit random
variable xf , such that Etf → xf in probability and
Etf = Etxf . We call a stochastic process a uniformly
convergent martingale if supf∈L(H) |Etf − xf | → 0 in
probability. For such classes we have the following
results.

Lemma 1. A uniformly convergent martingale has
convergent discrepancies.

Corollary 2. If a class C consists of a uniformly con-
vergent martingales, then it is learnable by the ERM
algorithm with uniform weights.

As shown in [Berti et al., 2002], a prominent example
of uniformly convergent martingales is a class of ex-
changeable sequences that is widely used in the statis-
tical literature. Exchangeability means that the sam-
pled data has the same distribution irrespectively of
the order of variables. In addition to i.i.d., this as-
sumption also covers an important case of complete
dependence, when one observes copies of the same
random variable. From this perspective, Corollary 2
can be seen as a generalization of the results proven
by [Berti et al., 2002] for exchangeable sequences and,
even further, by [Berti and Rigo, 2016] for condition-
ally identically distributed sequences.

Another example of a class with convergent discrep-
ancies is a class of processes used in [Mohri and
Rostamizadeh, 2013]. Their assumption (equation 6)
states for any hypothesis h that depends only on z1:t

and any n ≥ s > t we have

E [`(h, zn+1)| z1:s] = E [`(h, zn+1)| z1:t] . (15)

In particular, that means that for any fixed h (not
depending on the sample)

E [`(h, zn+1)| z1:n] = E [`(h, zn+1)] . (16)

If the marginal distributions at each step are the same,
as assumed in [Mohri and Rostamizadeh, 2013], then
(16) yields that all dt,n are zero, so they are convergent.

5.2 Non-convergent case

For the non-convergent case we give two examples of
how M-bounds can be constructed.

We already discussed an example of an M-bound for
predicting the next state of a discrete state Markov
processes in Section 4.2. The construction can be ex-
tended to more general situations, when the discrep-
ancy between two time steps can be related to the
similarity of their histories, namely for all h ∈ H,

|E [`(h, zi+1)| z1:i]− E [`(h, zj+1)| z1:j ]| ≤ λ(z1:i, z1:j),
(17)

where λ : Zi×Zj → R+ is a form of distance measure.
This property can be derived, e.g., from the continuity
of the conditional distribution with respect to the his-
tory, which is a common assumption in the literature
on nonparametric estimation, e.g. [Györfi et al., 1989,
Hansen, 2008, Linton and Sancetta, 2009].
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For example, if λ takes only the q most recent values
into account and is a metric, we can rewrite inequal-
ity (17) as

sup
h∈H
|Ri(h)−Rj(h)| ≤ λ(zi−q+1:i, zj−q+1:j). (18)

Now, for fixed ∆n > 0 letM be a ∆n-cover of Zq with
respect to λ, i.e. a countable subset of Zq, such that
for every element z̄ ∈ Zq there is an element of the
cover m̄ ∈ M with λ(z̄, m̄) ≤ ∆n. For any z̄, let c(z̄)
denote the closest element of M. Then we have

sup
h∈H
|Rt(h)−Rn(h)| ≤ ∆n + λ(zt−q+1:t, c(zn−q+1:n)).

(19)
Now, let m̄1, m̄2, . . . be an enumeration of M, and
define Mt,j = λ(zt−q+1:t, m̄j). Then we obtain an M-
bound by setting Jn = k for k that satisfies mk =
c(zn−q+1:n). In a similar way, we can obtain M-bounds
for related statistical settings, as the assumption of
continuity is a fundamental ingredient for many theo-
retical results in nonparametric statistics.

Another example of an M-bound can be given in the
scenario of rarely changing distributions. In this case
we observe independent samples, however, the distri-
bution from which these are sampled may occasion-
ally change [Tartakovsky et al., 2014]. Formally, for a
fixed sequence of distribution D1, . . . , Dk and change
points, 1 = c1 < · · · < ck+1 = n + 1, the samples
zci:ci+1−1 are drawn independently from the distribu-
tion Di, for i = 1, . . . , k. A simple strategy for this
task is to perform change point detection, for exam-
ple [Tartakovsky et al., 2014, Khaleghi and Ryabko,
2016, Kifer et al., 2004], and then distribute the weight
uniformly over the samples since the last change, i.e.
wt = 0 for t = 1, . . . , ck − 1 and wt = 1

n−ck+1 for
t = ck, . . . , n. A more elaborate scheme in this situ-
ation would be to estimate the discrepancies between
segments and use the estimates in the place of real dis-
crepancies. A similar approach was studied in the ac-
tive learning scenario by [Pentina and Lampert, 2016].

6 Controlling the exceptional set

For classes of processes with non-convergent discrep-
ancies, learnability requires not just the existance of
an M-bound, but also control of the exceptional set
(Corollary 1). In this section, we connect this property
to some well-known properties of stochastic processes.

To isolate the properties of the process from the as-
sumptions required to get an M-bound, we will ana-
lyze the ERM algorithm with a universal (though un-
fortunately incomputable) M-bound: we assume that
we have access to the individual discrepancies di,j and
define the bound in the following way. Fix some bn > 0

and let

Jn = inf {t ≥ 1 : dt,n ≤ bn} . (20)

Then, for t ≥ Jn

dt,n ≤ dJn,n + dt,Jn ≤ bn + dt,Jn , (21)

by a triangle inequality. Therefore, we can set ∆n = bn
and Mt,j = dt,j for t ≥ j and Mt,j = 1 for t < j.

To achieve the most obvious behaviour of Λn, we
choose gn(x) = I [x ≤ bn] as smoothing function. Then
we can guarantee that ∆n + Λn ≤ 2bn if Jn < n
and for bn → 0, we only need to show the exis-
tence of kn and mn → ∞ such that mn

logn → ∞ and

P[Eckn,mn
]→ 0. Now we consider a few different classes

of processes and analyze the behaviour of P[Eckn,mn
]

for the defined M-bound. We repeatedly use that
P[Eck,m] = P[Ak] + P[Bk,m] for Ak = {Jn > k} and

Bk,m =
{
Jn ≤ k ∧

∑n
t=Jn

I [dt,Jn ≤ bn] < m
}

. Hence,
we can consider the two events separately if needed.
The first two examples were already covered by the
convergent case, but we still mention them for illus-
trative purposes.

I.i.d. As noticed above, in this case di,j = 0 for all
i, j. This means that Jn always equals to 1 and we can
guarantee that P[Eck,m] = 0 for k = 1 and m = n− 1.

Complete dependence. Let z1 be a random vari-
able and zt = z1 for t > 1. Then after the first step,
the conditional distributions are just delta measures
concentrated on the previous point and we always get
Jn = 2, so that we obtain P[Eck,m] = 0 for k = 2 and
m = n− 2.

Periodic sequences. Consider a periodic determin-
istic sequence with a fixed period T ∈ N, like the
one obtained by observing the trajectory of a pendu-
lum. Because of periodicity, we know that every con-
ditional distribution occurs at least once within each
cycle, therefore, Jn ≤ T is guaranteed and, hence,
P[Eck,m] = 0 for k = T and m = b nT c − 1.

Discrete state Markov chains. For discrete state
Markov chains the bounds on the probability of Eck,m
are deeply connected to the notion of recurrence times.
For a state s ∈ S let Ts be the recurrence time to this
state: Ts = inf {t > 1 : zt = s|z1 = s} − 1. Then the
following connection holds, as shown in the supplemen-
tary material.

P [Bk,m] ≤ |S|mmax
s

P
[
Ts > b

n− k
m
c
]
. (22)

Therefore, the bound can be devised from the con-
centration properties of the recurrence times. For the
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other part of Eck,m we can show that

P [Ak] ≤ |S|max
s

P [Fs > k] , (23)

where Fs = inf {t ≥ 1 : zt = s} are the first passage
times, which also play an important role in the theory
of Markov chains, because they reflect how fast the
chain explores its state space. In combination,

P
[
Eck,m

]
≤ |S|max

s
P [Fs > k] (24)

+ |S|mmax
s

P
[
Ts > b

n− k
m
c
]
.

As an example of an obtainable rate, we apply
Markov’s inequality to (22),

P [Bk,m] ≤ |S|m
2

n− k
max
s

E [Ts] . (25)

One of the basic results from the theory of finite-state
Markov chains tells us that some particular state s can
be either recurrent or transient, depending on when-
ever E [Ts] is finite or not. If all E [Ts] are finite, then
all we need is m growing slower than

√
n− k. This

offers a nice connection of the recurrence properties of
Markov chains to their learnability.

Dynamical systems. Let (Z,Σ, µ, F ) be a dynam-
ical system, where Σ is a σ-algebra on Z, µ is some
measure on (Z,Σ) and F : Z → Z is a measure-
preserving transformation, meaning that for any set
A ∈ Σ we have µ(F−1(A)) = µ(A). The evolution
of a system is as follows: first z1 ∼ µ is sampled
and then any subsequent point is obtained through
the iteration zt+1 = F (zt) = F t(z1). Consequently,
di,j = suph∈H |`(h, F (zi))− `(h, F (zj))|. We assume
di,j ≤ λ(zi, zj) for some metric λ on Z. Let Cj =
{z ∈ Z : λ(z, zj) ≤ bn} be a ball around zj with ra-
dius bn, then P

[
Eck,m

]
is controlled by the first pas-

sage times and the recurrence times to the sets Cj
(analogously to the discrete Markov chain case). For-
mally, the recurrence time from a point z ∈ Z to a
set C is defined as T (z, C) = inf {t ≥ 1 : F t(z) ∈ C}.
Then, the first passage time to the set is defined as
F (C) = T (z1, C) and the recurrence time to a set
from itself is T (C) = ess supz∈C T (z, C). Similarly to
the Markov chain case, the following bound holds

P
[
Eck,m

]
≤ P [F (Cn) > k] (26)

+ k max
1≤j≤k

P
[
T (Cj) > b

n− j
m
c
]
. (27)

Poincaré’s theorem, e.g. [Katok and Hasselblatt, 1997],
tells us that any of the sets Cj will be visited infinitely
often. A quantitative characterization of the behaviour
of the recurrence times for dynamical systems can be
found, for example, in [Barreira, 2008].

General stationary processes. To relate the set-
ting to the existing work in the nonparametric pre-
diction, assume that the process is stationary and er-
godic and di,j ≤ λ(zi−q+1:i, zj−q+1:j) for some inte-
ger q and metric λ on Zq. For z̄ ∈ Zq let C(z̄) =
{ȳ ∈ Zq : λ(ȳ, z̄) ≤ bn}. Along the lines of the previ-
ous examples, define F (C) = inf {t ≥ 1 : zt ∈ C} as a
first passage time to a set C. Then we have

P
[
Eck,m

]
≤ P [(F (C(zn))) > k] (28)

+ k max
1≤j≤k

P

[
n∑

t=k+1

I [zt ∈ C(zj)] < m

]
.

In case of mixing processes, it is possible to determine
the rate of recurrence for the second term. More con-
cretely, it can be shown that

∑n
t=k+1 I [zt ∈ C(zj)] ≈∑n

t=k+1 P [zt ∈ C(zj)] ≥ inf z̄(n − k)P [zt ∈ C(z̄)], see
for example [Caires and Ferreira, 2005]. Therefore, for
mixing processes m can be chosen proportionally to n.

Distribution drift. Bartlett [1992] introduced the
setting of distributional drift: there is a deterministic
sequence of distributions D1, . . . , Dn+1 and samples
are drawn independently from the corresponding dis-
tribution: zi ∼ Di. Therefore, any conditional expec-
tations is the expectation with respect to the marginal
distribution of a point and we have the following ex-
pression for the discrepancies:

di,j = sup
h∈H

∣∣Ez∼Di+1
[`(h, z)]− Ez∼Dj+1

[`(h, z)]
∣∣ .
(29)

Since in the distribution drift scenario the samples are
independent, the values of Jn and

∑n
t=Jn

I [dt,Jn ≤ bn]
in the definitions of Ek,m are deterministic. Hence,
we can ensure that P

[
Eck,m

]
= 0 by trivially setting

k = Jn and m =
∑n
t=Jn

I [dt,Jn ≤ bn].

7 Conclusion

We presented the first general study of the learnabil-
ity of stochastic processes with respect to the condi-
tional risk. We highlighted the central role of the pair-
wise discrepancies between conditional distributions
and proved two theorems that establish criteria for
the learnability of many classes of stochastic processes.
Our results suggests that it will be beneficial to look
at how existing practical methods and models relate
to the discrepancies, thereby obtaining a better un-
derstanding of their effectiveness.
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